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Abstract 

The Miocene age sediments filling the Polish part of the Carpathian Foredeep Basin are characterized by 

the lithological and facies diversity. This in turn provides an excellent opportunity for implementing 

Machine Learning techniques in search of hydrocarbon (HC) traps. Especially stratigraphic traps related 

to a subtle submarine channel system. The use of classic amplitude-based attributes has unveiled the 

shape and the extent of this subtle stratigraphic feature. Texture attributes (i.e. GLCM Energy and 

Entropy) have also proven to be helpful, as well as frequency RGB blending or use of alternative 

stratigraphic imaging technique. Despite the interesting interpretation results obtained, some questions 

still remained to be answered. For example, the amplitude-based attribute images did not exactly match 

the information from the wells with best production parameters, located within the main distributary 

channel. Hence the idea of using self-learning techniques in search for seismic facies information that is 

not provided by any conventional seismic approach. Two unsupervised classifying algorithms were used 

in the research: Neural Net 3D and Kohonen SOM 3D. The obtained results allowed for a geological 

interpretation consistent with the borehole data, revealing previously unnoticeable elements of the 

examined structural object. Moreover, in further research, the Principal Component Analysis (PCA) 

technique was applied to a frequency content of a thin seismic layer within which it is located a gas 

producing channel system. This led to interesting conclusions on the possible thickness evaluation of the 

channel system. Application of unsupervised Machine Learning techniques, as a complementary method 

to the classic interpreter approach, resulted in a detailed recognition of gas producing subtle submarine 

channel system, with the possibility of indicating optimal locations for further exploration. 

Introduction 

The seismic data used in the research comes from a modern 3D survey located in the NE part of the 

Carpathian Foredeep Basin, which belongs to the foreland basin system that surrounds the Carpathian 
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orogenic belt (Figure 1). The basin here is filled with thick pelagic and turbidite formations which 

sedimentation process was influenced by its close proximity to the Roztocze Hills, forming part of the 

Carpathian forebulge zone. The main objective of the research was 

a fragment of sedimentation profile of Late-Badenian and Sarmatian age. 

There is a gas field here below horizon H, which, like most of the local 

commercial accumulations, is related to the structural trap (Figure 2). All 

boreholes shown are gas producing, except for well 6 which is negative. 

Well 9 was not tested for this interval.  

 

High variability of sedimentation environments 

during the temporal – spatial evolution of a basin 

fill makes the study area extremely interesting for 

testing modern tools and unconventional methods. 

And the main focus of these efforts was to estimate 

the exploration potential of structures within the 

basin. There are evidences to suggest that 

unconventional gas accumulations, related to non-

structural types of traps, may occur in this region. 

Such exploration objects are, in particular, the 

external and internal elements of submarine 

channels and fans. The different seismic signatures 

of these geological forms and the small scale of 

amplitude variation along with limited visibility 

make the process of their identification time 

consuming and difficult. 

The key stage of the interpretation workflow was the selection of seismic attributes that are highly 

sensitive to the presence of the objects sought. Interpretation work was carried out within a specific 

seismic layer, a target zone, covering only an interval of about 10 – 12 m thick, below the seismic horizon 

H (Figure 3). This cognitive process was performed in two ways: in a traditional way, through the 

Figure 1. Location map of the study area: NE part of Polish Carpathian Foredeep and the 3D seismic survey (A). Geological cross section AA’ 

through the eastern part of the Polish Outer Carpathians and their foreland (modified after Oszczypko et al. 2005) (B). 

 

Figure 2. Depth structure map of horizon H. 
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conventional work of the interpreter and in an 

automated manner by the use of unsupervised 

Machine Learning (ML) techniques.  

The conventional approach to the interpretation of 

seismic data was based on the generation and 

analysis of seismic attributes. The attribute 

selection list was long including amplitude, 

frequency, seismic texture or geometric attributes. 

Most of them has provided a number of clues in the 

process of detecting potential prospecting objects. 

However, in the obtained attribute imaging, some 

inaccuracies were observed with respect to the 

borehole data. And so, e.g. the popular attribute of 

the distribution of mean square RMS amplitude 

values (Figure 4) allows to focus on the right 

seismic interval and capture potential zone that 

stands out from the seismic background. The 

observed amplitude anomaly did not yet allow to 

determine the genesis of the tested object. The 

lineaments highlighted in warmer colors suggested 

the possibility of the presence of channel-like 

elements. However, the location of producing wells 

3, 12 and 13 (with the best reservoir parameters) 

was not clearly emphasized in this distribution of 

RMS values. 

In turn, the use of texture attributes (derived by the 

use of the Grey Level Co-occurrence Matrix 

method, GLCM) resulted in obtaining a more 

unambiguous geometry of the examined object 

(Figure 5). The use of the GLCM method texture 

attributes in the described case was one of the 

important elements of the preliminary exploration 

phase of the seismic data interpretation work 

(Łukaszewski 2021). These attributes highlighted 

the internal elements of this object and provided 

a lot of information about the complexity of the 

channel system present here. The gas-bearing sand 

thickness here is about 8 m thick. The other wells, 

located outside the channel, most probably within 

the channel fans, have reported lower sand thickness ranges from 2 to 6 m. 

Hence both: the low thickness along with the low acoustic impedance between channel system and 

surrounding clastic environment, influenced by gas saturation, most probably caused a barrier for 

Figure 3. Depth seismic section. 

Figure 4. RMS seismic amplitude values distribution map. 

Figure 5. GLCM Energy, a box probe with manipulated transparency. 
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amplitude-based method in this feature detection. 

Therefore, in further analysis, seismic attributes 

were used which use the frequency content. For 

example, it has been shown the Sweetness attribute 

(Figure 6), as a combination of amplitude and 

frequency, which is used to emphasize the HC 

filled reservoir (Hart 2008). Excellent results in the 

imaging of the examined object were also obtained 

by selecting iso-frequencies compositions within 

the chosen interval (Figure 7A). 

An alternative stratigraphic imaging technique such 

as ExChroma was also used (without using any 

seismic attribute), obtaining information with 

a similar level of detail (Figure 7B). In the latter case, new and important information was the perfect 

imaging of the main channel, now visible in the SW part of the studied area. 

All the seismic attributes used provided a lot of 

information about the tested object. The result of the 

conventional approach to the interpretation of 3D 

seismic data is imaged complex of channels with 

frontal splays and leveed channel (Figure 8). 

However, it would be difficult to conclude on their 

basis as to the causes of the negative borehole 6. 

Also, the quite random location of the boreholes at 

the northern boundary of this object, 11, 10, 15 and 

5 is puzzling given the good reservoir parameters 

encountered here. Many of the questions posed seem 

to have been answered by the results of the applied 

unsupervised ML as described in the next chapter. 

Figure 7. Composite of iso-frequencies 38, 44 and 48 Hz within the chosen interval (A). ExChroma, seismic amplitude volume (B). 

 

Figure 6. Seismic attribute Sweetness. 

  B   A 

Figure 8. Interpreted distributary channels along with levees, probable 
crevasse splays and fans. Horizon slice, amplitude seismic volume, 

dedicated color bar. 
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Machine Learning technique application methodology 

The applied workflow can be described in four main stages: 

• selection of long list of seismic attributes, 

• Principal Component Analysis (PCA) to reduce the attribute space, 

• selection algorithms and parameters testing for unsupervised classification, 

• ML application to derived frequency data. 

The first stage was largely implemented during the classic approach to facies interpretation of seismic 

data, described in more detail in the previous chapter. The list of seismic attributes applicable to the 

fulfillment of prospecting targets was quite long. Hence, in order to select only those carrying the most 

important information about the analyzed geological object, dedicated tools were used. Principal 

Component Analysis technique has proven to be an appropriate one for understanding which seismic 

attribute (or their combination) has interpretive significance (Roden et al. 2015). Seismic attributes with 

highest percentage contributing to largest variation in the data for first principal component were: 

Sweetness, Envelope, Intensity and GLCM Energy. In the next stage, the seismic attributes defined by the 

PCA were the input data for the unsupervised classification. Two classification algorithms were used: 

simple Neural Net 3D and Kohonen SOM 3D. In the case of the first algorithm, Neural Net 3D, the 

resulting 10-class volume was found interesting. On the other hand, using the Kohonen SOM 3D 

algorithm, the resulting volumes with a higher class combination were considered. Finally, the 5×5×5 and 

8×8×8 matrices were selected as providing the most informative result. Obtained seismic volumes of 

Kohonen SOM 3D classification to 125 as well as to 512 classes were subject to a detailed analysis of the 

observed geobodies within a box probe. 

In the last phase of the work, an attempt was made to use ML techniques for derived frequency data (after 

spectral decomposition transformation). This idea arose as a result of the observed high sensitivity of 

frequency attributes in the process of detecting subtle geological forms. 

Figure 9. Generalized workflow for frequency data analysis. 
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Therefore it was required to reuse of frequency-based attributes, but in other way this time (Figure 9). 

Having frequency spectrum analyzed, a set of 2D amplitude images for chosen frequencies was 

generated. Attributes were captured from the flattened seismic amplitude volume, along time slice close 

to the base of the examined channel system. The collection of 28 amplitude maps, for frequency ranges 

from 30 – 57 Hz, was the input for PCA analysis. As a result, two eigenvectors were selected and the 

limited number of frequency maps was identified. The first principal component (PC1) revealed the 

importance of 15 attribute maps, for frequency ranges from 41 to 55 Hz, with their coefficients values 

above 0.95. The second principal component (PC2) consisted of 9 attribute maps (for frequency ranges 

from 30 to 38 Hz), with coefficients values around 0.5 – relatively small, but significantly different from 

the rest of the values. The set of 2D attribute maps, for both PC1 and PC2 (higher and lower frequencies 

respectively), were the input data for the unsupervised classification using simple Neural Net 2D 

algorithm.  

Results 

The resulting 10-class volume after using the Neural Net 3D algorithm very clearly illustrates probably 

the most sandy elements of the submarine channel complex (Figure 10A). They are described with 

selected classes 1, 2, 3 and 9 as shown in Figure 10B. Borehole 6 is clearly outside the above-mentioned 

classes, which is consistent with its negative status. 

Wells 13, 12 and 3, with the best reservoir parameters, are located centrally in the element described by 

class 3, interpreted as one of the channels. However, the obtained results do not explain the situation of 

producing wells 11, 10, 15 and 5, which seem to be located outside the classes defined in this way. The 

result of the analysis also indicates several other areas classified in a similar way, which are likely 

locations for further exploitation works. Figure 11A and Figure 11B show Kohonen SOM 3D 

classification to 125 classes and to 512 classes respectively. In both cases, only the class range that 

defines the environment of the submarine channel complex is displayed. The obtained images are very 

similar to the results of Neural Net 3D, however, due to the much greater number of classes describing 

them, they are characterized by a greater degree of detail. What has not been achieved in previous 

analyzes, and appears in the Kohonen SOM 3D results, is one element forming the lineament between 

Figure 10. A box probe with manipulated transparency: resulting 10-class volume after applying Neural Net 3D algorithm (A), the selected classes 
well define the main channels of the studied complex (B). 

 

  B   A 
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wells 11, 10, 15 and 5. It is described in the same class as the already known channels and has been 

interpreted as most likely an abandoned channel. 

Such an interpretation seems to be consistent with the facial situation described in these producing wells.  

Since different channel thickness will tune with different frequencies (Partyka et al. 1999), the resulting 

12-class maps (for both: higher and lower frequencies) constituted an interesting supplement to the 

analyzes performed, as a source of information on the relative thickness relations. Figure 12 shows the 

selected classes for both cases. 

A black dotted polygon was superimposed on both maps, which is an interpretation of the zones with the 

highest thickness of sandy channels (based on the Neural Net 2D result for PC2). The resulting image for 

PC1 (higher frequencies) reveals less thick elements as well as a network of smaller distribution channels 

from the seismic background. Despite the fact that we are dealing with small thicknesses of sandy 

sediments (4 - 8 m), the proposed approach to relative thickness analyzes with the use of ML for 

frequency data brought good results. 

Figure 12. Resulting map after applying Neural Net 2D algorithm for PC1, higher frequencies (A) and PC2, lower frequencies (B). The selected 
classes (for both cases) show the relative thickness differences within the studied complex. 

 

Figure 11. Box probe with manipulated transparency. Kohonen SOM 3D classification to 125  classes, classes 8 to 28 displayed (A). Kohonen 

SOM 3D classification to 512  classes, classes 50 to 68 displayed (B). 

 

  B   A 
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The resulting classification 

image is consistent with the 

reservoir thickness found in 

the boreholes (Figure 13).  

Conclusions 

The obtained images, as 

a result of the attempts to use 

ML techniques for detailed 

recognition of the subtle 

submarine channel system, 

provided a lot of information 

about this stratigraphic 

feature. The shape of the 

main producing channel is 

clearly imaged now and 

consistent with the available 

well control. Moreover,  the channel has its eastern, unexplored extension. A new object with similar 

geometric characteristics emerges from the background in a undrilled zone to the south. Apart from the 

channels, interesting areas highlighted by other classes are also noticed, which would represents other 

system features, like fans or crevasse splays. The interesting conclusions could be drown also on the 

possible thickness evaluation of the channel system. Performing the described detailed analysis for this 

interesting interval of Miocene sediments also has important implications for the gas field with which the 

studied geological object is 

undoubtedly related. Figure 

14 shows the concept of 

hybrid hydrocarbon 

accumulation as would now 

be considered the gas field 

mentioned herein. All gas 

producing wells are located 

within the 4-way closure 

structure. The trap in the 

current interpretation can be 

extended to the limits of the 

examined stratigraphic 

feature, obtaining a new, 

hybrid closure. Application 

of unsupervised Machine 

Learning techniques as 

a complementary method to 

the classic interpreter 

approach, resulted in tangible benefits. It has led to detailed recognition of gas producing subtle 

submarine channel system, with the possibility of indicating optimal locations for further exploration. 

Figure 14. The concept of hybrid hydrocarbon accumulation with optimal locations for further 
exploration. 

Figure 13. The obtained classification image (Neural Net 2D classification map for PC1) is 

consistent with the reservoir thickness found in the boreholes. 
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