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Summary

Time Preserving Tomography is an accurate, efficient and flex-
ible tool for constructing kinematically equivalent subsurface
models given a background model and a set of model param-
eter perturbations. In this method, parameters of the back-
ground model are allowed to change while preserving travel-
times of all ray pairs. Perturbations can be applied for all types
of model parameters. In the case of tilted transverse isotropy
(TTI) the model parameters are the axial compressional ve-
locity, Thomsen anisotropic interval parameters epsilon and
delta, and the depth values of the model horizons. The travel-
times of all ray pairs traced during the tomographic inversion
are kinematic invariants. In the migrated domain, all the kine-
matically equivalent models should provide more or less flat
reflection events along common image gathers (CIG). In fact,
time-preserving tomography does not require CIG at all. An
example of the application of this type of method is the use
of misties between well markers and seismic depth horizons
to obtain Thomsen delta parameters (Mancini, 2013). Time-
preserving tomography is a very useful tool for depth interpre-
tation, uncertainty analysis and risk management.

Introduction

Subsurface geological models derived from seismic imaging
are not unique. Many combinations of subsurface geological
model representations and model parameters can be used to
satisfy the imaging conditions and flatten common image gath-
ers. This is mainly due to the limitations of seismic data acqui-
sitions, in particular the limited offset between sources and re-
ceivers and the lack of azimuth coverage. Other factors for the
non-uniqueness are finite frequency band, noise, poorly illumi-
nated zones and limitations in the asymptotic high-frequency
ray method and theory of wave propagation used (e.g. not ac-
counting for factors like the “real” anisotropy, dispersion from
attenuation, scattering, etc.). The process of deriving a sub-
surface anisotropic velocity model from seismic data is very
demanding, normally requiring massive computational power
and intensive human involvement. This non-uniqueness prob-
lem demonstrates the motivation and need for the following
processes:

1. Integration of additional external information into the model
building procedures in order to reduce the ambiguity / non-
uniqueness. The most prominent example of this is well
markers that are used to constrain the depths of the seismic
horizons.

2. Analysis of equivalent subsurface models that differ from
the current model by small perturbations in the model pa-
rameters. Starting with a given background model, we want
to define small changes in one or more of the model param-

eters, and construct a new model that respects these small
changes, while keeping the rays traveltimes unchanged (i.e.
fully in agreement with the recorded seismic data). Such a
construction is natural in the interpretation process (asking
interpretative queries like, “What are the location changes
of the interface horizons due to given perturbations of the
axial compression velocity and Thomsen parameters?”).

Figure 1: Background subsurface velocity model and model
perturbation maps. The layer above the deepest horizon was
assigned a laterally variant depth perturbation map (mistie
map). Second formation from the top was assigned a constant
velocity perturbation of −200m/s.

We present the concept of Time Preserving Tomography - an
accurate and efficient tool for constructing a kinematically equiv-
alent subsurface model given an initial background model and
a set of model perturbations (which we call constraints), while
keeping the total traveltime along specular incident and re-
flected rays traveling through the subsurface model unchanged.
Under the assumptions of tilted transverse isotropy (TTI), by
model perturbations we mean small changes in the axial com-
pressional velocity, anisotropic interval parameters epsilon and
delta, and the depth values of the model horizons. In Time
Preserving Tomography we first calculate a set of kinematic
characteristics inherent to the background model. These kine-
matic characteristics are computed on a relatively coarse grid
(the tomographic inversion grid) by calculating the discrete
traveltime integrals along specular rays shot in wide opening
angles and all azimuths through our background anisotropic
model. This results in a set of linear homogeneous equations
(the right hand side of the system describes traveltime errors
which are set to zero in this case). The kinematic characteris-
tics are the coefficients of the above-mentioned homogeneous
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system. These coefficients are stored in a matrix called the in-
fluence matrix. In the second stage we add the imposed model
constraints (perturbations) to the influence matrix and solve
the system using the Conjugate Gradient algorithm.

Key features of our system include:

Accuracy - the perturbed models preserve the total traveltime
of all rays travelling through the model. In particular, normal
incident traveltimes are preserved, while vertical time is gen-
erally not.
Flexibility - the system can receive perturbations for different
model parameters for each subsurface geological layer. The
perturbations are defined as layer parameter maps which can
vary laterally for each subsurface layer.
User control - the user has full control over the inversion pro-
cess. The constraints are added as soft constraints; that is, we
don’t set any variables to a specific value, but rather introduce
the constraints as additional equations in our system, and find
the best solution to the entire system in a least squares sense.
The user can control the weight he/she wishes to assign to the
constraints relative to the influence matrix. The user can define
the reflection angle range for which traveltimes will be pre-
served. Accurate depth-to-depth conversion can be achieved
by using only small angles around the Normal Incidence rays.
A wider range (up to 30 degrees half-opening angles) may be
used to convert isotropic models into anisotropic models using
additional information about well-based depth misties.
Efficiency - the most time-consuming step is the first one, that
is run only once for a given model. The specific constraints are
defined and used only in the second part, which is fast (order
of minutes for medium-size surveys). Therefore, the user can
run several scenarios quickly to generate a series of equivalent
models.

Theory

Ray-based residual traveltime tomography in general and time-
preserving tomography in particular, is based on solving a very
large, over-determined system of linear equations. These lin-
ear equations can be viewed as a set of linear constraints. In
time-preserving tomography we distinguish between two types
of linear constraints: (a) imposing zero traveltime errors along
the traced rays and (b) explicitly setting model parameter per-
turbations for either (or both) horizons’ depths and anisotropic
velocity parameters. Solving this system of linear equations
will result in an updated model that simultaneously satisfies
both types of constraints.

Preserving Traveltimes
In ray-based reflection tomography (Kosloff et al., 1996; Wood-
ward et al., 1998; Billette and Lambaré, 1998) an influence ma-
trix is constructed, relating variations in medium parameters to
residual traveltimes computed from residual moveouts (RMO)
measured along CIG. In the case of time-preserving tomogra-
phy, the assumption is that the starting point is a model which
is consistent with the short offset data at least, and possibly
with longer offset events. The data consistency can be viewed
and defined with respect to the range of flattened events within
the CIGs.

We use a model-based approach in which the subsurface model
is defined by a set of geological layers separated by curved
interfaces and faults. Our 3D grids for the model update pa-
rameters and for the shooting points for fans of ray pairs are
regular in the horizontal directions, and irregular in the verti-
cal direction - the grid points coincide with the structural in-
terfaces. The updated model parameters are represented on a
coarse grid. Rays are shot from a finer horizontal grid in which
pairs of incident and reflected rays are shot with respect to the
Normal direction. The traveltime variation with respect to the
model parameters of each ray pair is given by
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with i an index running on all model nodes. ∆V,∆ε,∆δ ,∆z
are the variations (updates) of the axial compressional veloc-
ity, Thomsen parameters and the horizon depth values respec-
tively. Ai
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with t the total ray pair traveltime and m = V,ε,δ ,z. Each ray
pair produces such an equation; together they define an over-
determined system of linear equations (the number of rays is
considerably larger than the number of model nodes). This
could be written in a matrix-vector notation,

AV ∆V +Aε ∆ε +Aδ ∆δ +Az∆z = 0 (3)

This equation represents our first type of traveltime preserva-
tion constraints. It can be brought to an even simpler form if
we define
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)

; A∆m = δ t

(4)
If the total number of ray pairs shot was NR and the number of
model parameters is Nm then A is a NR×Nm matrix.

Introduction of Model Perturbations
In order to obtain a desired value m̃i of a model parameter at
node i, we define a perturbation to the background value mi

Ci
m = m̃i−mi (5)

Our second type of constraint is simply the demand that

∆mi = Ci
m (6)

We may introduce such an equation for each model parame-
ter that we wish to modify to a desired value. Our complete
system of equations is (4) combined with all the constraints of
type (6). However, if the number of such constraints is Nc, it is
necessary (but generally not sufficient) that Nc < Nm to solve
the combined system of equations.

One may notice that the model constraints are of different units
than (4). We therefore scale equations (6) to the same units by
multiplying them by a scale factor Si

m,

Si
m ·∆mi = Si

m ·Ci
m (7)
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For reasons to be shown, we choose this factor to be

Si
m =

√∑
i

(
A ji

m

)2
(8)

where A ji
m is the j-th row element of A that correspond to node

i and model parameter of type m.
We also define

Di
m = Si

m ·Ci
m (9)

Now the second type of constraints can also be written in a
matrix-vector notation

S∆m = D (10)

For convenience, we define matrix S as a Nm×Nm diagonal
matrix, with zero entries for parameters for which no con-
straint was defined. Vector D is defined in a similar manner.

Solution of the System
Now both matrix S and A multiply the same vector in equations
(4, 10) and have the same units. Note that since ST = S, the
combined least squares equation reads(

AT A+βS2)
∆m = β ·S ·D (11)

where we also introduce an additional (positive) constant β

that can control the relative weight of the model constraints vs.
the traveltime constraints. Our choice of S (8) ensures us that
all non-zero diagonal elements of S2 are equal to those of AT A.
Thus when setting β = 1, the solution of (11) will equally re-
spect the two types of constraints. For any other choice of β ,
the solution will be biased in favor of one type of constraints.
The system is over-determined and requires additional regular-
ization terms. The final equation reads(

AT A+βS2 +CM +LT L
)

∆m = β ·S ·D (12)

with CM a damping term and LT L a structural smoothing op-
erator. This system of linear equations is solved using the
Conjugate-Gradient algorithm.

Example

As an example we used a synthetic dataset of a VTI layered
model (Figure 1). It consists of 6 layers, most of which are
relatively thin (∼ 200m). Our initial model in this case is the
correct one (i.e. the model used for generating the synthetic
seismic data). The velocity and anisotropy interval parameters
are constant per layer (apart from some smoothing). Pertur-
bations were specified for two of the layers. The layer above
the deepest horizon was assigned a laterally variant depth per-
turbation map with peak values of −180m, while the second
layer from the top was assigned a constant velocity pertur-
bation of −200m/s. Time-Preserving Tomography was ap-
plied, allowing model parameters of all types to vary (veloc-
ity, depth, ε and δ )1. In Figure 2 we display the velocity
updated by time-preserving tomography (2(a)) compared to
the initial velocity (2(b)). It is evident that the deepest hori-
zon was pushed up and that the velocity in the second layer
from the top has decreased. The velocity update in the second

1More accurately, the difference ε−δ was kept fixed.

layer exactly matches the input perturbation (−200m/s) while
the bottom horizon depth updates match the perturbations by
80%−100%. Since perturbations were specified only for two
layers, all other layers received compensating updates so that
traveltimes will be preserved. Also shown are seismic images
obtained from Kirchhoff PSDM VTI migration using the up-
dated velocity and anisotropy volumes (2(c)), and from mi-
grating with the true initial model (2(d)). The updated horizon
maps are displayed on top of the image and colored according
to depth updates. The updated maps are the result of adding the
depth updates to the initial horizon maps. They are clearly con-
sistent with the seismic image. In Figure 3 we show migrated
gathers that were created using the initial model (3(b)) and the
updated model (3(a)). The gathers’ lateral position is the cen-
ter of the dome-shaped structure where the largest model per-
turbations were given (and consequently, largest updates). All
events remained flat with their vertical position shifted. This
indicates that the model is consistent not only with short offset
data (as the stack image suggests) but also with far offset data
(i.e. all rays’ traveltimes are preserved). Therefore, we may
call the updated model a true equivalent of the initial model.

Conclusions

We present in this paper a practical method for incorporat-
ing diverse external information into the velocity model up-
dating process, and for generating alternative anisotropic ve-
locity models that explain the measured seismic data equally
well. Our results show that the tomographic inversion is sta-
ble, accurate and remains loyal to the seismic data. Its speed of
computation and flexibility make it a good candidate to be used
not only in the process of velocity model updating, but also in
the interpretation phase as a tool for analyzing the correctness
of the current interpretation and for risk management.
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Figure 2: Comparison of the background and updated velocity model and their resultant seismic images. The background velocity
model is shown in (b) on top of which are the model horizon maps. Shown in (a) is the updated model which is a result of time-
preserving tomography. The updated horizon maps are also a direct result of tomography (obtained from {∆zi}). A seismic image
migrated using the background velocity model is shown in (d). An image migrated using the updated model is shown in (c). The
model horizon maps are displayed on top of the image and colored according to depth updates. Clearly the updated model is
consistent with the seismic data.

(a) (b)

Figure 3: Depth migrated gathers using original velocity model (b) and updated velocity model from time-preserving tomography
(a). The gathers correspond to the center of the dome-shaped structure (see Figure 2) where the largest model perturbations were
given. All events remained flat with their vertical position shifted.
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